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Abstract

This paper describes a color scene analysis method for the
object surfaces appearing in the noisy and imperfect images
of natural scenes. It is developed based on the spatial and
spectral grouping property of the human visual system. The
uniformly colored surfaces are recognized by their
monomodal 3-D color distributions and extracted in the
spatial domain using the lightness and chromaticity net-
work of the Munsell system. The textured image regions are
identified by their irregular histogram distributions and
isolated in the image plane using the Julesz connectivity
detection rules. The method is applied to various color
images corrupted by noise and degraded heavily by under-
sampling and low color-contrast imperfections. The method
was able to detect all the uniformly colored and heavily
textured object areas in these images.

1. Introduction

Scene analysis is the first essential step in the development
of vision systems.1 This process determines the simple
structural characteristics of objects’ surfaces using detailed
image domain properties. It involves the separation of
object surfaces from the background area in noisy and
imperfect images of complex scenes involving irregular
textures. Although the identification of object and surface
boundaries comes naturally to a human observer, accurate
scene analysis has proved difficult and complex. Achieving
an adequate scene analysis result depends mainly on devis-
ing techniques to detect uniformity among the feature
values of the picture points, and then isolating the areas of
the picture exhibiting these uniformities. In this paper, we
describe a method to find the visually distinct and contex-
tually meaningful image areas corresponding to the uni-
formly colored or heavily textured object surfaces.

First, the uniformly colored object regions are recog-
nized by their monomodal color distributions in the 3-D
color space using lightness and chromaticity network of the
Munsell system. The textured image regions are then iden-
tified by their irregular histogram distributions. A texture
analysis scheme is developed based on Julesz’s conjecture
to obtain the structural scene characteristics of textured
regions. Features extracted include the spatial and spectral
information embodied in the textured areas. This enables
the method to extract the textured object regions using the
image dependent features.

The algorithm is applied to the four color images of the
city skyline taken during winter. These images were cor-
rupted by noise and degraded heavily by different imperfec-
tions (e.g., low resolution and very low color contrast). The

method was able to detect all the uniformly colored or
heavily textured object areas in these images.

Remaining of this paper is organized as follows. We
first give the background information for selecting the color
space for the method. Operation of the overall approach is
then described by an algorithm. Analysis results of an
under-sampled, low-contrast picture are then presented.

2. Background

A color image is usually given by three values at every
pixel, which correspond to the R (red), G (green), and B
(blue) tristimuli. For color scene analysis, it is desirable that
the selected color features define a space possessing uni-
form metric.2,3,4 The (L*,a*,b*) and (U*,V*,W*) color
coordinate systems developed by the CIE (Commission
Illumination d’Eclairage) in 19765 approximately satisfy
this property. It has been shown in Ref.[6] that the former
space gives better results than the latter in analyzing the
color pictures. This system is obtained from the (R,G,B)-
primary system by converting the (R,G,B) values into the
(X,Y,Z)-nonphysical primary system7

  X = 2.7690R + 1.7518G + 1.1300B (1.1)
  Y = 1.0000R + 4.5907G + 0.0601B (1.2)
  Z = 0.0000R + 0.0565G + 5.5943B (1.3)

and applying a cube-root transformation to the (X,Y,Z)
values:

 L* = 116[Y/Y0]1/3 – 16       ,Y/Y0 > 0.01  (2.1)
a* = 500[(X/X0)1/3 – (Y/Y0)1/3]       ,X/X0 > 0.01 (2.2)

 b* = 200[(Y/Y0)1/3 – (Z/Z0)1/3]       ,Z/Z0 > 0.01   (2.3)

where Xo, Yo, and Zo are the (X,Y,Z) values of the reference
white. Here, they are selected 2n-1 for n-bit image data
representation. The cylindrical coordinates (L*, H°, C*)8 of
this space resemble the empirical Munsell color order
system9 and concur almost exactly with the accepted physi-
ological model of color vision.10 These coordinates, known
as psychometric lightness, hue and chroma, are given by

L* = L* (3.1)
H° = tan-1(b*/a*) (3.2)
C* = (a*2 + b*2)1/2 (3.3)

The loci of constant lightness, hue, and chroma de-
scribe the appearance of object colors under certain view
and lighting conditions. Any horizontal section through the
space would define a plane of constant lightness while any
vertical plane originating at the achromatic L* axis would
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Figure 1.
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Figure 1, continued.
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be a plane of constant hue. A cylindrical section concentric
with the L* axis however would constitute a surface of
constant saturation in which all the object colors have the
same purity. In Fig.1, organization of the constant chroma-
ticity network of the Munsell system are shown for twenty
hues (varying from 5R to 10RP) at eight chroma values
(increasing from /2 to /16) in the (a*,b*)-plane for the
Munsell values of 3/ through 9/. The radial hue and concen-
tric chroma loci are also approximated by radial lines and
concentric circles in the least square sense as shown in the
same figure.

3. Description of the Method

First, the uniformly colored object regions are recognized
by their monomodal color distributions in the (L*,a*,b*)
space. They are extracted using lightness and chromaticity
network of the Munsell color order system. The textured
image regions are then identified by their irregular histo-
gram distributions. The textured surfaces are separated
from the background area using the Julesz conjecture.
Operation of the method may be described by the following
algorithm:12,13,14

Step 1: Starting from the 1-D histograms of the line
projections of the (L*,a*,b*) space, detect the most promi-
nent color distribution and its neighbor(s) in some ranges of
a particular color component.

Step 2: Based on this line information, project only a
portion of the space onto the other two color coordinates and
using their respective l-D histograms, determine the plane
properties of the detected color distributions.

Step 3: Based on the extracted plane information,
project only a part of the space onto the last color coordinate
and using the respective 1-D histogram, find the space
distributions of the detected modes.

Step 4: Project the estimated color distributions of the
best mode and its neighbor onto the line of Fisher discrimi-
nant for 1-D thresholding.

Step 5: Test the modality of 1-D histograms of remain-
ing image points for a prominent color distribution. If a
decisive 1-D peak exists, proceed with step 1; otherwise,
extract an additional feature set and proceed with step 1.

In the following sections, we first demonstrate the
operation of the first three steps of the algorithm for analyz-
ing the uniformly colored object surfaces. We then present
the operation of step 5 for isolating the heavily textured
regions or surfaces in the scene.

3.1. Uniformly Colored Surface Analysis
The Munsell network of colors is explored for estimat-

ing the 3-D color distributions of the uniformly colored
object regions. For this purpose, the radial hue lines and the
concentric chroma circles of Fig. 1 are used to estimate the
object color distributions in some circular-cylindrical vol-
ume elements in the (L*,a*,b*) space. The underlying
volume is bounded by two lightness planes, two hue planes,
and two chroma cylinders. Figure 2 shows the process of
forming such a decision element. It is clear from Fig. 2 that
we need to determine the values of six loci to specify such
a decision volume. This gives the nonparametric estimates
of the object color distributions in the 3-D color space. The

Figure 2.

(a) Bimodal histogram of different lightness classes. (b) Bimodal histogram of different hue classes.

(c) Bimodal distributions of different lightness hue and chroma classes.
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goal here is to reduce the computational cost involved in
forming 3-D decision surfaces. In addition, use of the l-D
histograms for detecting the 3-D color distributions makes
the detection process computationally efficient. This is
similar to the process described in Ref.[11], which relies on the
use of elliptical and parabolic decision surfaces to enclose
image clusters in the X-Y, X-I, and Y-I plane projections of the
(X,Y,I) normalized color space. However, use of the chroma-
ticity network results in simpler decision surfaces than those
obtained in Ref.[11]. Furthermore, here the color distribu-
tion is sought in the 3-D space instead of its lower dimen-
sional subspaces as proposed in Ref.[11]. This permits
utilization of all the property values of object colors for the
analysis, and inherently recognizes their respective cross
correlation. This way, the region acceptance is not limited
to the information available from one color component.

3.2. Textured Surface Analysis
After extracting all the uniformly colored regions, the

picture is then analyzed for textured regions. For this
purpose, the remaining part of the image is partitioned into
the atomic regions of maximally 4-connected pixels of the
similar color. The 4-connectivity between an image pixel
(i,j) and its neighbor (m,n) in a 3 × 3 local window centered
at (i,j) is defined by |i - m| + |j - n| = 1. For this partitioning,
every unprocessed pixel is initially assumed to be an atomic
region by assigning it a region number. Starting from the
first row and first column, the color vector of each unclas-
sified point is compared with that of its left and top neigh-
bors. If a similarity between the pixel in process and any of
its specified neighbors in a 3 × 3 local window is detected,
then the region number of that element is modified to that of
its similar neighbor. Here the similarity between an image
pixel (i,j) and its left or top neighbor (m,n) is defined by

|L*(i,j) - L*(m,n)| < Lt (4.1)
|H°(i,j) - H°(m,n)| < Ht

o (4.2)
|H°(i,j) - H°(m,n)| > Ht

o (4.3)
|C*(i,j) - C*(m,n)| < Ct (4.4)

where Lt, Ht°, and Ct are the image dependent threshold
values. The outlined region growing technique is repeated
at every unprocessed point of the image.

After this initial partitioning, the algorithm computes
the center of Gk of every atomic region ak using

ik = C(i, j) ⋅ i
j

∑
i

∑











/ C(i, j)

j
∑

i
∑












(5.1)

jk = C(i, j) ⋅ j
j

∑
i

∑











/ C(i, j)

j
∑

i
∑












(5.2)

where |C(i,j)| is the magnitude of the color vector of a point
(i,j) in ak. An M × N local window is then located at the
center of the atomic region in process (see Fig.3). Within
this window, eight fixed directions are defined from the
center of that atomic region. On each of these directions,
similarity between the atomic region in question and its
neighbors is tested according to the similarity criteria given
by Eqs. (4.1) through (4.4). If the continuity property is
observed along these directions, the atomic region of inter-
est is classified as being a part of a uniform region and its
feature vector is computed in the corresponding direction(s).
If the continuity search fails, then a possible periodic
texture structure is sought to classify the atomic region as
being a spectral primitive of a texture field and to compute
its feature vector in the respective directions. The spatial

Figure 3.
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primitives of a texture field are the atomic regions and the
spectral primitives are the colors which satisfy the Julesz
connectivity detection rules15,16,17 for spontaneous discrimi-
nation of visual patterns. This conjecture states that the
human eye has the capability of grouping the similar colors,
but no grouping of dissimilar colors is possible. Figure 4
illustrates this property in the (x,y)-chromaticity plane. This
property is observed in the spatial domain as follows:
Suppose that we are given four different hue samples of the
same luminance involving red (R), yellow (Y), green (G),
and blue (B) colors. Assume that the color patches are
created from the given hue samples and arranged in the
spatial plane in two different view fields as shown below:

    View field 1:     View field 2:

   Texture1   Texture 2    Texutre 1   Texture 2

RYRYRYRY GBGBGBGB RGRGRGRG YBYBYBYB
YRYRYRYR BGBGBGBG GRGRGRGR BYBYBYBY
RYRYRYRY GBGBGBGB RGRGRGRG YBYBYBYB
YRYRYRYR BGBGBGBG GRGRGRGR BYBYBYBY

Figure 4.

In spontaneous vision, the human eye will group the
given color patches as arranged in the view field 1. This
suggests that the color transitions for a texture field should
be sought by considering the atomic regions with least color
deviation. Thus the spatial periodicity in this search is
defined as the 3-step random color transition that takes
place between adjacent atomic regions. It also implicitly
satisfies the spectral property stated above. The following
expression illustrates the 3-step color transition:

        Ck → Cl → Ck → Cl (6)

where Ck and Cl are the color patch vector of atomic regions
of a texture field as shown in Fig. 5. An important property
of this transition is that it is not color-contrast dependent and
not a function of the structural properties (e.g., shape, size,
orientation, etc.) of a textured region. If a color vector is
modified by a constant or the spatial structure of a texture is
changed, the above transition takes place as long as the
difference between the consecutive color patches exceeds
the threshold given above.

Figure 5.

In the absence of continuity and texture patterns, the
atomic region is accepted as an isolated one and its feature
assignment is made considering all of its touching neighbors.

Once an atomic region is classified as being a part of a
visual pattern L (see Fig. 6) through the specified directions,
then the feature vector f is assigned to that atomic region by
averaging the color vectors of the atomic regions in that
visual pattern as described below:

    f = E{Ck U Cl} (7)

Here, Ck and Cl are the color vectors of the atomic
region ak and its neighbors in the determined directions in L,
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E is the expected value operator, and U represents the union
of color vectors. Since the E operator simulates the group-
ing property of the human eye in L, the region L is then
analyzed as a uniformly colored area with respect to f.

Figure 6.

4. Experimental Results

The color scene analysis technique presented in this paper
was applied to several low contrast color images of the
skyline of Pittsburgh city taken in winter. The spectral
contents of the images are limited mainly to the bright
colors. This property is observed mostly on the lightness

and chroma distributions, which are concentrated in the
lower values of chroma and the higher values of lightness
(usually C*<30 and L*>60), respectively. The original
images are given with the 8 bits/pixel R,G,B specification
in 580 × 700 grid. The pictures were resampled and their
sizes are reduced to 193 × 232 by a factor of 3 in each
dimension. This under sampling created various image
imperfections such as missing elements and noise.

Four images were analyzed in the computer implemen-
tation of the method. Only the analysis results of one of
these pictures are presented here. The original image (in
reduced form) is given in Fig. 7 and the processing results
are shown in Fig. 8.

5. Conclusions and Further Research Topics

In this paper, a color scene analysis technique has been
presented and its use in color picture segmentation has been
described. The procedure described here does not use any a
priori information about the scene domain or impose any
constraints on the color distributions. It also extracts the
features most useful for the picture being processed. With
these properties, the technique is not affected by substantial
variations of input scenes.

Further research is needed on the following issues. The
link between the presented method and the sensor charac-
teristics and their physical models requires further research.
Its operation needs to be improved for analyzing scenes
involving rough textures, shadows and highlights, inconsis-
tent color appearance, etc. Operation of the method should
be tested on oddly shaped color distribution (e.g., linear,
long, elongated, etc.).

Figure 7.
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Figure 8.
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